78 research outputs found

    Historical Arctic Logbooks Provide Insights into Past Diets and Climatic Responses of Cod

    Get PDF
    Gadus morhua (Atlantic cod) stocks in the Barents Sea are currently at levels not seen since the 1950s. Causes for the population increase last century, and understanding of whether such large numbers will be maintained in the future, are unclear. To explore this, we digitised and interrogated historical cod catch and diet datasets from the Barents Sea. Seventeen years of catch data and 12 years of prey data spanning 1930–1959 cover unexplored spatial and temporal ranges, and importantly capture the end of a previous warm period, when temperatures were similar to those currently being experienced. This study aimed to evaluate cod catch per unit effort and prey frequency in relation to spatial, temporal and environmental variables. There was substantial spatio-temporal heterogeneity in catches through the time series. The highest catches were generally in the 1930s and 1940s, although at some localities more cod were recorded late in the 1950s. Generalized Additive Models showed that environmental, spatial and temporal variables are all valuable descriptors of cod catches, with the highest occurring from 15–45°E longitude and 73–77°N latitude, at bottom temperatures between 2 and 4°C and at depths between 150 and 250 m. Cod diets were highly variable during the study period, with frequent changes in the relative frequencies of different prey species, particularly Mallotus villosus (capelin). Environmental variables were particularly good at describing the importance of capelin and Clupea harengus (herring) in the diet. These new analyses support existing knowledge about how the ecology of the region is controlled by climatic variability. When viewed in combination with more recent data, these historical relationships will be valuable in forecasting the future of Barents Sea fisheries, and in understanding how environments and ecosystems may respond

    Socio-economic Impacts—Fisheries

    Get PDF
    Fishers and scientists have known for over 100 years that the status of fish stocks can be greatly influenced by prevailing climatic conditions. Based on historical sea surface temperature data, the North Sea has been identified as one of 20 ‘hot spots’ of climate change globally and projections for the next 100 years suggest that the region will continue to warm. The consequences of this rapid temperature rise are already being seen in shifts in species distribution and variability in stock recruitment. This chapter reviews current evidence for climate change effects on fisheries in the North Sea—one of the most important fishing grounds in the world—as well as available projections for North Sea fisheries in the future. Discussion focuses on biological, operational and wider market concerns, as well as on possible economic consequences. It is clear that fish communities and the fisheries that target them will be very different in 50 or 100 years’ time and that management and governance will need to adapt accordingly

    Assessing the risk of climate change to aquaculture: a national-scale case study for the Sultanate of Oman

    Get PDF
    Aquaculture is expanding globally and is an increasingly important component of world food security. However, climate change can impact aquaculture through a variety of mechanisms varying by location and aquaculture type with implications for future productivity. Understanding the risks that climate change poses on different culture systems in different locations is important to enable the design of targeted adaptation and resilience building actions. Here we present an aquaculture climate risk assessment framework, applied to the aquaculture sector of the Sultanate of Oman, that identifies the sensitivity and exposure of different components of the sector to climate change risk. Oman has aspirations to significantly expand aquaculture over the next decade focussing on coastal shrimp ponds, finfish sea cages, land-based recirculating aquaculture systems, and ponds and raceways. We quantify overall climate risk as the combination of four risks: (1) species’ temperature sensitivity, (2) flooding and storm surge exposure, (3) low-oxygen hazard and (4) disease vulnerability. Shrimp culture is identified as highest risk due to high exposure of shrimp ponds to flooding and storm surges, and high disease vulnerability. Seabream cage farming also faces high risk due to high thermal sensitivity and high potential of low-oxygen levels affecting sea cages. Following the risk assessment a stakeholder workshop was conducted to identify targeted adaptation measures for the different components of the sector. The framework for assessing climate risk to aquaculture demonstrated here is equally applicable at the regional, national or sub-national scale to support design of targeted resilience building actions and enhance food security

    Effort reduction and the large fish indicator: Spatial trends reveal positive impacts of recent European fleet reduction schemes

    Get PDF
    The large fish indicator (LFI), or ‘proportion of fish greater than 40 cm length in bottom trawl surveys,’ is a frequently debated indicator of Good Environmental Status in European regional seas. How does the LFI respond to changes in fishing pressure? This question is addressed here through analysis of fine-scale spatial trends in the LFI within the North Sea, compared between two periods of contrasting fisheries management: 1983–1999 and 2000–2012, respectively, before and after the onset of the European Union's fleet reduction scheme. Over the entire period, the LFI has decreased in large parts of the North Sea. However, most of the decline was from 1983–1999; since 2000 the LFI has improved in much of the North Sea, especially in UK waters. Comparison with international effort data shows that those western areas where the LFI has improved correspond with regions where otter trawl effort has decreased since 2000 (and previously was highest in the 1990s), and also with decreases in beam trawl effort. This study provides strong support that recent European effort reduction schemes are now beginning to result in an improved ecosystem state as indicated by the regional-scale improvement in the LFI

    Disaster risk in Caribbean fisheries: How vulnerability is shaped and how it can be reduced in Dominica and Antigua and Barbuda

    Get PDF
    Hurricanes and tropical storms have a substantial and sustained influence on fisheries globally. These threats present particularly significant challenges in Caribbean islands, where fisheries contribute towards economies, food security, and social and cultural identities. Yet, storm impacts on coastal communities and fisheries are a relatively neglected area of disaster risk reduction. In response, this paper reports on a novel application and adaptation of the Pressure and Release model (PAR) focused on Caribbean Island fisheries. The PAR is a wellestablished framework used to understand how vulnerability manifests and to identify appropriate policy and management options to reduce vulnerability and build resilience in the longer-term. This research highlights how this approach can expose underlying social, cultural, and economic factors that can either reduce or exacerbate vulnerability in the Caribbean island fisheries sector following extreme weather events using Dominica and Antigua and Barbuda as case studies. This study combines a literature review compiling data on underlying factors of vulnerability for Caribbean Island fisheries, with in-person interviews with fisheries managers from Dominica, and Antigua and Barbuda. It showcases the utility of the PAR in fisheries-focused recovery, and provides empirical evidence that fisheries play an important role in supporting immediate and medium-term coping and recovery after an extreme storm event. This approach has broader relevance for climate change adaptation as it highlights strategies for building resilience for fisheries-dependent societies

    Quantifying spatio-temporal consistency in the trophic ecology of two sympatric flatfishes

    Get PDF
    Sympatric flatfish predators may partition their resources in coastal environments to reduce competition and maximise foraging efficiency. However, the degree of spatial and temporal consistency in their trophic ecology is not well understood because dietary studies tend to overlook the heterogeneity of consumed prey. Increasing the spatial and temporal scale of dietary analyses can thus help to resolve predator resource use. We applied a stomach content and multi-tissue (liver and muscle) stable isotope (δ13C, δ15N and δ34S) approach to investigate the feeding habits of two co-occurring flatfish predators, common dab (Limanda limanda) and European plaice (Pleuronectes platessa), across four bays on the Northumberland coast (UK) over short (hours), medium (days) and long (months) temporal scales. Stomach content analyses showed spatial consistencies in predator resource use, whereas stable isotope mixing models revealed considerable inter-bay diet variability. Stomach contents also indicated high dietary overlap between L. limanda and P. platessa, while the stable isotope data yielded low to moderate levels of overlap, with cases of complete niche separation. Furthermore, individual specialisation metrics indicated consistently low levels of specialisation among conspecifics over time. We document changes in resource partitioning in space and time, reflecting diet switching in response to local and temporal fluctuations of patchily distributed prey. This study highlights how trophic tracers integrated at multiple temporal and spatial scales (within tens of kilometres) provide a more integrative approach for assessing the trophic ecology of sympatric predators in dynamic environments

    Can fisheries-induced evolution shift reference points for fisheries management?

    Get PDF
    Heino, M., Baulier, L., Boukal, D. S., Ernande, B., Johnston, F. D., Mollet, F. M., Pardoe, H., Therkildsen, N. O., Uusi-Heikkilä, S., Vainikka, A., Arlinghaus, R., Dankel, D. J., Dunlop, E. S., Eikeset, A. M., Enberg, K., Engelhard G. H., Jørgensen, C., Laugen, A. T., Matsumura, S., Nusslé, S., Urbach, D., Whitlock, R., Rijnsdorp, A. D., and Dieckmann, U. 2013. Can fisheries-induced evolution shift reference points for fisheries management? - ICES Journal of Marine Science, 70: 707-721. Biological reference points are important tools for fisheries management. Reference points are not static, but may change when a population's environment or the population itself changes. Fisheries-induced evolution is one mechanism that can alter population characteristics, leading to "shifting” reference points by modifying the underlying biological processes or by changing the perception of a fishery system. The former causes changes in "true” reference points, whereas the latter is caused by changes in the yardsticks used to quantify a system's status. Unaccounted shifts of either kind imply that reference points gradually lose their intended meaning. This can lead to increased precaution, which is safe, but potentially costly. Shifts can also occur in more perilous directions, such that actual risks are greater than anticipated. Our qualitative analysis suggests that all commonly used reference points are susceptible to shifting through fisheries-induced evolution, including the limit and "precautionary” reference points for spawning-stock biomass, Blim and Bpa, and the target reference point for fishing mortality, F0.1. Our findings call for increased awareness of fisheries-induced changes and highlight the value of always basing reference points on adequately updated information, to capture all changes in the biological processes that drive fish population dynamic

    Climate change impacts on the coral reefs of the UK Overseas Territory of the Pitcairn Islands: Resilience and adaptation considerations

    Get PDF
    The coral reefs of the Pitcairn Islands are in one of the most remote areas of the Pacific Ocean, and yet they are exposed to the impacts of anthropogenic climate change. The Pitcairn Islands Marine Protected Area was designated in 2016 and is one of the largest in the world, but the marine environment around these highly isolated islands remains poorly documented. Evidence collated here indicates that while the Pitcairn Islands' reefs have thus far been relatively sheltered from the effect of warming sea temperatures, there is substantial risk of future coral decalcification due to ocean acidification. The projected acceleration in the rate of sea level rise, and the reefs' exposure to risks from distant ocean swells and cold-water intrusions, add further uncertainty as to whether these islands and their reefs will continue to adapt and persist into the future. Coordinated action within the context of the Pitcairn Islands Marine Protected Area can help enhance the resilience of the reefs in the Pitcairn Islands. Options include management of other human pressures, control of invasive species and active reef interventions. More research, however, is needed in order to better assess what are the most appropriate and feasible options to protect these reefs

    Can fisheries-induced evolution shift reference points for fisheries management?

    Get PDF
    Biological reference points are important tools for fisheries management. Reference points are not static, butmay change when a population's environment or the population itself changes. Fisheries-induced evolution is one mechanism that can alter population characteristics, leading to "shifting" reference points by modifying the underlying biological processes or by changing the perception of a fishery system. The former causes changes in "true" reference points, whereas the latter is caused by changes in the yardsticks used to quantify a system's status. Unaccounted shifts of either kind imply that reference points gradually lose their intended meaning. This can lead to increased precaution, which is safe, but potentially costly. Shifts can also occur in more perilous directions, such that actual risks are greater than anticipated. Our qualitative analysis suggests that all commonly used reference points are susceptible to shifting through fisheries-induced evolution, including the limit and "precautionary" reference points for spawning-stock biomass, B-lim and B-pa, and the target reference point for fishing mortality, F-0.1. Our findings call for increased awareness of fisheries-induced changes and highlight the value of always basing reference points on adequately updated information, to capture all changes in the biological processes that drive fish population dynamics
    corecore